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The nonequilibrium Green’s function method is applied to investigate the coefficient of thermal expansion
�CTE� in single-walled carbon nanotubes �SWCNT� and graphene. It is found that atoms expand about 1%
from equilibrium positions even at T=0 K, resulting from the interplay between quantum zero-point motion
and nonlinear interaction. The CTE in SWCNT of different sizes is studied and analyzed in terms of the
competition between various vibration modes. As a result of this competition, the axial CTE is positive in the
whole temperature range, while the radial CTE is negative at low temperatures. In graphene, the CTE is very
sensitive to the substrate. Without substrate, CTE has large negative region at low temperatures and very small
value at high-temperature limit, and the value of CTE at 300 K is −6�10−6 K−1 which is very close to a recent
experimental result, −7�10−6 K−1 �Nat. Nanotechnol. 10, 1038 �2009��. A very weak substrate interaction
�about 0.06% of the in-plane interaction� can largely reduce the negative CTE region and greatly enhance the
value of CTE. If the substrate interaction is strong enough, the CTE will be positive in whole temperature
range and the saturate value at high temperatures reaches 2.0�10−5 K−1.
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I. INTRODUCTION

Single-walled carbon nanotubes �SWCNT� and graphene
are two kinds of novel carbon-based materials with lots of
intriguing electronic and mechanical properties.1–6 They
have many potential applications in nanodevices, where the
thermal property plays a big role. The coefficient of thermal
expansion �CTE� is one of the most important nonlinear ther-
mal properties. Very recently, the CTE of graphene is mea-
sured to be −7�10−6 K−1 at T=300 K.7 Also the CTE of
multiwalled carbon nanotubes8–10 and nanotube bundles11–14

are measured in experiments. Theoretically, there are several
approaches to calculate CTE such as molecular-
dynamics,15–18 lattice-dynamics calculations,16,19–22 the mo-
lecular structural mechanics method,23 analytical method,24

and ab initio density-functional theory and density-
functional perturbation-theory calculations.25,26 However,
discrepancies exist in different approaches. In Refs. 16, 18,
and 24 the CTE is predicted to be negative in low-
temperature region while positive at high temperatures. On
the contrary, Li and Chou23 obtain positive value for CTE in
whole temperature range. In Ref. 25, CTE for graphite is
negative at low temperatures and positive at high tempera-
tures, and CTE for graphene is negative in whole tempera-
ture range. In Refs. 18 and 24, the axial CTE increases from
negative to positive with increasing temperature; while the
minimum value of axial CTE is quite different: −1�10−6 or
−5�10−5 K−1 and this value is achieved at different tem-
peratures: 300 or 500 K in Refs. 18 and 24, respectively. In
the high-temperature region, the value for CTE is also quite
different from one to another, typically about 2.0
�10−6 K−1 in Refs. 16 and 23, 4.0�10−6 K−1 in Ref. 24, or
more than 5�10−6 K−1 in Ref. 18. In Ref. 23 the CTE
shows only a slight dependence on the length or diameter of
the SWCNT. While Ref. 24 predicts the obvious decrease in

CTE with increasing diameter. To the best of our knowledge,
the limited existing theoretical works are diverse.

In this paper, we investigate the CTE in SWCNT and
graphene sheets by the nonequilibrium Green’s function
�GF� approach, which includes contributions from all pho-
non modes and takes into account the quantum effect. Our
study shows that even at T=0 K the averaged position of
each atom deviates about 1% from its equilibrium position.
This is the result of the combined contribution from quantum
zero-point motion and nonlinear interaction. For the CTE in
SWCNT, we study the competition between lateral bending
vibration �negative effect�, the radial breathing mode �posi-
tive effect�, and the longitudinal-optical-phonon mode �posi-
tive effect�. As a result, the axial CTE is positive in the
whole temperature range while the radial CTE has negative
value at low temperatures and the radial CTE is in general
one order of magnitude smaller than the axial CTE at high
temperatures. Our results show that the axial CTE is not very
sensitive to the size of SWCNT. Yet for radial CTE, the
thinner SWCNT �with higher aspect ratio length/diameter,
L /d� has more tense bending vibration, thus has smaller
value. For graphene, we demonstrate that the value of CTE is
very sensitive to the interaction � between the substrate and
graphene. If there is no substrate, graphene has negative CTE
at low temperatures and generally the CTE is very small at
high temperatures, and the value of CTE at T=300 K from
our calculation is �=−6�10−6 K−1, which agrees with the
experimental one. When the interaction is nonzero, even a
very small value ��=0.001 eV / �Å2u�� will largely shrink
the negative CTE region, and greatly enhance the value of
CTE at high temperatures. If � is larger than 0.1 eV / �Å2u�,
the CTE is positive in the whole temperature range and satu-
rates at value of 2.0�10−5 K−1 at high temperature.

The paper is organized as follows. In Sec. II, we present
the detailed derivations in the GF method. Sec. III is devoted
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to the main results and relevant discussions. The conclusion
is in Sec. IV.

II. GREEN’S FUNCTION METHOD

The definition and notations of GF used in this paper are
from Ref. 27–29, where relationships between different ver-
sions of GF can also be found. In the present investigation of
CTE, two types of GF are required

Gj��� = −
i

�
�T�uj

H���� , �1�

Gjk��,��� = −
i

�
�T�uj

H���uk
H����� , �2�

where uj
H��� is the vibrational displacement of atom j in

Heisenberg picture, multiplied by the square root of mass of
the atom. T� is the contour-order operator on the Keldysh
contour and � is the time on the contour. The contour-order
operator in Gj��� is necessary in the further perturbation ex-
pansion of it. In the harmonic system without nonlinear in-
teraction, all atoms vibrate around the equilibrium position
linearly, so Gj

0���=0 and the two-point harmonic contour-
ordered GF Gjk

0 �� ,��� can be exactly calculated

Gjk
0 ��,��� = −

i

�
�T�uj

H���uk
H�����0, �3�

where the subscript 0 indicates a harmonic system.
These two GFs are defined in the Heisenberg picture,

however the use of interaction picture is more advantageous
in the study of systems with nonlinear interaction. The Gj���
in the interaction picture can be obtained by using the gen-
eral picture transformations

Gj��� = −
i

�
�T�S�− �,− ��uj

I���� , �4�

where uj
I is the vibrational displacement in the interaction

picture. S is the scattering matrix. The nonlinear interaction
used in the present paper takes the form

Hn = �
lmn

klmn

3
ulumun + �

opqr

kopqr

4
uoupuqur, �5�

where klmn and kopqr are interaction constants for the cubic
and quartic interactions. These nonlinear interactions are
generated from the Brenner potential30 by finite difference
method.

By applying Wick’s theorem, Gj��� can be expanded in
terms of Hn. Figure 1 gives the Feynman diagrams for Gj���
up to the second order of �. For thermal expansion, the first
diagram in this figure is most important, so we mainly con-
sider this diagram in the following context. The contribution
of this diagram to Gj��� is

Gj��� = �
lmn
� d�1d�1�d�1�Tlmn��1,�1�,�1��Glm

0 ��1,�1��Gnj
0 ��1�,�� ,

�6�

where we have introduced Tlmn��1 ,�1� ,�1��
=klmn	��1� ,�1�	��1� ,�1� for convenience. The contour-ordered
GF can be transformed into time domain by using the corre-
sponding rule:28 �→ �t ,
�, where the branch index 
=� is
introduced such that �= t+ i�
 is on the upper �
=+1� or
lower �
=−1� contour branch. � is a small positive number.
We find that Gj


�t� is independent of the branch index 
 and
time t. This can be understood in the sense that the system
after thermal expansion is in thermal equilibrium state and
the thermal-expansion effect does not depend on the direc-
tion of the contour. For simplicity, we use Gj to represent the
one-point GF Gj


�t� in the following. After some derivations
and using the Langreth rules �see Appendix A�, we obtain the
final expression for Gj,

Gj = �
lmn

klmnGlm
 �0�G̃nj

r �0� , �7�

where G and G̃r are the greater and retarded GF. They can
be calculated in the eigenspace without doing any integration
as given in Appendix B. For simplicity we have omitted the
superscript 0, which indicates a harmonic system. To avoid

confusion, we use G�t� in time domain and G̃��� in fre-
quency domain. We note that the information of temperature
T is carried by G. Then the averaged vibrational displace-
ment for atom j can be obtained from Eq. �1�. From now on,
the symbol uj will denote the averaged vibrational displace-
ment for atom j. This is different from its original meaning
in Eq. �5� where no average is taken. The CTE at tempera-
ture T is calculated from

� j =
i�
	M

�
1

xj
�

dGj

dT
, �8�

where M is the mass of atom. xj is the position of atom j, and
xj =0 at the common boundary of the fixed and the other
regions. Using this equation, the CTE is obtained from the

FIG. 1. Feynman diagrams for Gj��� with the cubic and quartic
nonlinear interactions up to the second order of �.
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information of a single atom j. To obtain more accurate value
for CTE, one needs to average � j over the atoms.

III. RESULTS AND DISCUSSIONS

In our calculations, the system is relaxed using the Bren-
ner’s potential. Then the dynamical matrix and nonlinear
force constants are obtained by finite-difference method. The
dynamical matrix is diagonalized to obtain the eigenfrequen-
cies and eigenvectors. Finally, the eigenfrequencies, eigen-
vectors and nonlinear force constants are used to calculate
the GF following the formula in Appendix B. Generally, the
relevant anharmonic value from Brenner’s potential is about

klmn /kij
�0.8 Å−1, where kij is one element in the dynami-
cal matrix.

Figure 2 is the configurations for SWCNT and graphene
in our calculation. For both systems, the smaller balls �blue
online� on the left boundaries are fixed atoms while the right
boundaries are free. This boundary condition corresponds to
thermal expansion under zero pressure. The x axis in
SWCNT is along its axial. In graphene, the x axis is along
the in-plane horizontal direction, y in the vertical direction,
and z in the perpendicular direction. Periodic boundary con-
dition is applied in the y direction in graphene.

We first study the axial thermal expansion in SWCNT.
Figure 3�a� shows the averaged vibrational displacement in
the x direction for different atoms, i.e., u�x�. The horizontal
axis is the position of each atom along x axis. Generally, u�x�
increases with increasing x which reveals the fact that the
thermal expansion is homogenous along x axis. On the two
boundaries, there are some boundary effects due to the dif-
ferent local environments from atoms in the center region.
Figure 3�b� shows the temperature dependence of u for one
of the atoms in the center region. At high temperatures, u
�T is the classical behavior. With temperature decreasing,
quantum effect appears, and around T=800 K, the curve de-

viates distinctly from the classical behavior. This implies that
the Debye temperature in the SWCNT is typically about 800
K. The quantum effect dominates the low-temperature region
with T�150 K. In this temperature region, u keeps a non-
zero constant, resulting directly from the combination effect
of the quantum zero-point motion and nonlinear interaction
in SWCNT. It means that even at T=0 K, atoms still vibrate
around equilibrium positions, and as a result of the nonlinear
interaction, their averaged vibrational displacements is about
1% of lattice constant from equilibrium positions. This value
is not small because the interaction in covalent-bonding car-
bon system is very strong, so the frequencies of the optical-
phonon modes are high, thus the zero-point motion energy is
also high. We expect this temperature-dependent curve for u
can be confirmed by x-ray or other optical experiments.

The axial CTE ��a� of SWCNT can be calculated by us-
ing uj of each atom from Eq. �8�. Figure 4 shows the value of
axial CTE calculated from different atoms at T=1000 K.
The horizontal axis is the x position for each atom. SWCNT
in this figure is zigzag �5, 0� with length L=30 Å. Due to
boundary effects on the left and right ends, values for CTE in

FIG. 2. �Color online� Configurations for different systems: �a�
single-walled carbon nanotube; �b� graphene sheet. The left bound-
ary parts �smaller ball, blue online� are fixed.
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FIG. 3. �Color online� The averaged vibrational displacement u
of SWCNT. �a� u vs x at T=1000 K. �b� u vs T for the atom located
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these two regions deviate obviously from that in the center
region. So we drop data on two boundaries and average over
other data in the center region to obtain the value of CTE.

Figure 5 shows the temperature dependence for axial CTE
in zigzag SWCNT of different sizes. They are similar to the
results of armchair SWCNT. It shows that the length and
diameter have small effects on axial CTE, and the value of
axial CTE is positive in the whole temperature region. This
is consistent with previous results in Ref. 23, but different
from that in Ref. 24, where the axial CTE depends on diam-
eter sensitively and is negative at low temperature. In gen-
eral, the value of CTE increases quickly in low-temperature
region and reaches the classical limit at high temperatures.
We point out that at T=800 K, this value still changes a lot
with changing temperature. This temperature �800 K� is a bit
smaller than the value of Debye temperature in SWCNT or
graphene, which is above 1000 K.31–33 This result can be
understood in the sense that the optical-phonon modes play
an important role in the calculation of the Debye
temperature.32 While in the study of the thermal-expansion
effect, the optical-phonon modes are not very important due
to their high frequency. So the critical temperature here is
lower than Debye temperature.

Figure 6 is the temperature dependence for the radial CTE
��r� of different sized SWCNT. The radial CTE is obtained
from the changing of diameter with changing temperature.
Compared with the axial CTE, there are abundant behaviors
here. �1� First, we can see �r�0 in low-temperature region.
The origin of this phenomenon is the bending vibration in
this rodlike SWCNT system.34 Figure 7 shows the position
for midline in SWCNT along the x axis at T=1000 K. This
figure indicates the bending vibration directly. This bending
vibration has a very low energy thus is very important at low
temperatures. It leads to contraction in radial direction in the

SWCNT. As a result, the radial CTE is negative in low-
temperature region where other high-energy vibration modes
are not excited. �2� A general behavior in both Figs. 6�a� and
6�b� is that the thinner SWCNT �with higher aspect ratio
length/diameter, L /d� has smaller value of �r and larger
negative CTE region. This is mainly because the bending
vibration in thinner SWCNT is more intense �see Fig. 7�. For
SWCNT with different diameters shown in Fig. 6�b�, there is
one more reason. In SWCNT, another important vibrational
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FIG. 5. �Color online� Axial CTE vs temperature in SWCNT
with: �a� diameter d=4 Å and different length L; �b� length L
=30 Å and different diameter d.
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mode in the radial direction is the radial breathing mode.
This mode can make the SWCNT expand in the radial direc-
tion. The frequency of the radial breathing mode is inversely
proportional to diameter. So in SWCNT, the larger the diam-
eter, the smaller the frequency of radial breathing mode.
Therefore, more positive contribution at low temperatures
will lead to larger value of �r. The competition between the
bending vibration and the radial breathing vibration gives a
valley in all curves of �r in Fig. 6. �3� The value of �r is
typically one order of magnitude smaller than �a. Because
along the axial of SWCNT there are some high-frequency
optical-phonon modes, which lead to strong expansion in the
axial direction. Another reason is that along the circular di-
rection, SWCNT forms a closed configuration, which makes
it more difficult to expand in the radial direction. While in
the axial direction, the right side is open and expansion along
this direction is easier. In Fig. 6�a�, the CTE does not show
convergence behavior with increasing L. This is mainly due
to very serious bending vibration in long SWCNT. As a re-
sult of this strong bending movement, it will be difficult for
our method to calculate the radial CTE accurately.

Now we turn to the thermal expansion in graphene.
Graphene is easily bent due to its two-dimensional elastic
sheet configuration. So in the experiment it is very difficult
to hang a graphene sheet by just holding it on one side �e.g.,
left side as shown in Fig. 2�b��. Furthermore, to study the
thermal-expansion effect, one cannot suspend the graphene
sheet by fixing both left and right sides. The only reasonable
choice is to put the graphene sample on a substrate. In this
situation, the substrate can support the graphene stably. But
in the mean time, interactions between the substrate and
graphene will affect the bending vibration seriously, thus in-
fluences the measured value for CTE in graphene sheet. In
the following we focus on this substrate effect on the CTE in
graphene sheet.

The interaction between substrate and carbon atoms in
graphene can be described by the on-site potential in the z
direction:35 V= �� /2�uz

2 with � as the interaction force con-
stant in unit of eV / �Å2u�. uz is the vibrational displacement
in the z direction. Figure 8 is the CTE of graphene with 204
atoms for different values of �. CTE is very sensitive to �.
When there is no substrate interaction the bending vibration
is very strong �which has negative effect on CTE�, so the
CTE is very small in the high-temperature limit, and a large
negative CTE region occurs at low temperatures. At T

=300 K, �=−6�10−6 K−1. This value agrees with the very
recent experimental result of −7�10−6 K−1.7 However,
when the substrate interaction is introduced, even a very
small value of �=0.001, can significantly enhance the value
of CTE. Furthermore, the negative CTE region considerably
shrinks. After further increasing interaction, the value of
CTE is further increased; the negative CTE region is further
reduced and disappears after �=0.1. A saturate value for
CTE is obtained after �=1.0, where the bending vibration
has been suppressed completely by the substrate interaction.
We should point out that the value of �=0.001 is actually
only about 0.06% of the interaction between carbon atoms in
the two-dimensional graphene sheet36 which is more than
1.67 eV / �Å2u�. The practical experimental substrate interac-
tion might be larger than this value. So the measured value of
CTE will be higher than the curve with �=0.001 in Fig. 8. If
the experimental substrate interaction is larger than �=0.1,
no negative CTE should be observed. By the way, if we
compare the saturated value at high temperatures with that in
the SWCNT as shown in Fig. 5, we find that the value of
CTE in graphene is much larger than SWCNT. This fact
implies that the bending vibration in the SWCNT is also very
important for the axial CTE. It considerably reduces the
value of axial CTE without causing negative axial CTE in
SWCNT.

IV. CONCLUSION

In conclusion, the GF method has been applied to inves-
tigate the CTE in SWCNT and graphene. The effect of quan-
tum zero-point motion and nonlinear interaction at T=0 K
has been observed clearly. The axial CTE in SWCNT is posi-
tive in whole temperature range while the radial CTE can
have negative value at low temperatures. It shows that thin-
ner SWCNT has smaller radial CTE, resulting from the com-
petition between bending vibration and radial breathing vi-
bration. Our calculation displays that the CTE in graphene
sheet is very sensitive to the interaction between substrate
and graphene, which will greatly enhance the CTE in
graphene sheet.
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APPENDIX A: LANGRETH RULES

To arrive at Eq. �7�, relations between different types of
Green’s functions are in need.28 The following Langreth
rules37,38 are used to obtain these relations.

For the time invariant contour integral

A��,��� =� B��,���C���,���d��, �A1�

its Fourier transform has following relations
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FIG. 8. �Color online� CTE vs temperature for graphene sheet
with various strength of interaction between substrate and graphene.
The interaction � is from 0 to 10 eV / �Å2u�.
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A���� = Br���C���� + B����Ca��� ,

A��� = Br���C��� + B���Ca��� ,

Ar��� = Br���Cr��� ,

Aa��� = Ba���Ca��� . �A2�

APPENDIX B: GREEN’S FUNCTION IN EIGENSPACE

The retarded GF Gr��� can be obtained straightforwardly
since it has the expression as28

G0
r��� = ��� + i��2I − K�−1, �B1�

where K is the N�N force-constant matrix and � is a small
positive number. N is the degree of freedom in the system. I
is a unit matrix with the same dimension as K. As a result,

G0
r�0� = − K−1. �B2�

The calculation of G�0� is more complicated. However we
find that it will be much more advantageous to work in the
eigenspace. �a� First, the force-constant matrix K is diagonal-
ized

S†KS = �2, �B3�

where the unitary matrix S stores the information of all
eigenvectors. And eigenvalues are in the diagonalized matrix
�2

�2 =�
�0

2

�

��
2

�

�N−1
2
 . �B4�

�b� The GF in real space �including both time domain and
frequency domain� can be obtained from the corresponding
one in the eigenspace. We take G0

r��� as an example to il-
lustrate this correspondence

G0
r��� = ��� + i��2I − K�−1

= ��� + i��2I − S�2S†�−1 = S��� + i��2I − �2�−1S†

= SG0
r���S†, �B5�

where we have used the relation for two matrices �AB�−1

=B−1A−1 and we have introduced notation G0
r���= ���

+ i��2I−�2�−1 to denote the GF in the eigenspace. G0
r��� is a

diagonal matrix with the element as

G0
r��,��� = ��� + i��2 − ��

2 �−1. �B6�

Similarly we have,

G0
�t� = S�G0

�t��S†. �B7�

This kind of correspondence is valid for other GF, and the
relations between different GF in the real space still hold in
the eigenspace.

�d� From Zeng’s thesis29 or P. Brouwer’s note,39 the GF
for a single oscillator system with frequency �0 has explicit
expression in time domain and frequency domain

G0
r�t� =

− i

2�0
��t��e−i�0t − ei�0t� , �B8�

G0
r��� =

1

�� + i��2 − �0
2 , �B9�

G0
a�t� =

i

2�0
��− t��e−i�0t − ei�0t� , �B10�

G0
a��� =

1

�� − i��2 − �0
2 , �B11�

G0
��t� =

− i

2�0
��1 + f�ei�0t + fe−i�0t� , �B12�

G0
���� =

− i�

�0
�	�� + �0��1 + f� + 	�� − �0�f� , �B13�

G0
�t� =

− i

2�0
��1 + f�e−i�0t + fei�0t� , �B14�

G0
��� =

− i�

�0
�	�� − �0��1 + f� + 	�� + �0�f� , �B15�

where f = f��0�= 1
e���0−1

is the Bose distribution function with
�=1 / �kBT�.

�e� Using Eq. �B7� and �B14�, the one-point GF Gj can be
calculated without doing any integration

Gj = �
lmn

klmnGlm
 �0�Gnj

r �0� = �
lmn

klmn�SG0
�t = 0�S†�lm�− K−1�nj

= �− i��
lmn

klmn�S�
�

1

2��

�2f + 1�

�

S†
lm

��− K−1�nj . �B16�

In the study of the coefficient of thermal expansion, the
derivative of Gj�t� with respective to temperature T is needed

dGj

dT
= �− i��

lmn

klmn�S�
�

1

��
� df

dT
�

�

S†
lm

��− K−1�nj . �B17�
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